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× MOXIE is a 1:200 scale 
model of an In Situ 
Resource Utilization 
(ISRU) plant for a human 
mission.
× The size is limited by 

available  power

× MOXIE will make 6-10 g of 
propellant-grade O2 per 
hour from CO2 , which 
makes up most of the thin 
air on Mars
× Like a smallish tree, or 

~50% of what a person 
breathes

Jet Propulsion Laboratory
California Institute of Technology

J. Mellstrom , Project Manager
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The Solid OXide Electrolysis (SOXE) cell
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M i E  Putting it together
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On Mars
The first year

Safe arrival on Mars: February 18, 2021
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M i E  Atmospheric density variations on Mars
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(Blue ovals represent original notional plan)
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M i E  Cumulative O2 produced
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Total 5.37g

Energy (MOXIE only): 623 W-hr + RMCA (94% to 52% SoC)
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M i E  O2 purity for FM-OC13 (molar)

Purity = 1 – CS2 / P5
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M i E  Reverse engineering on Mars
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Supercam microphone spectrograms (courtesy Chide et al.)

Listening to the MOXIE compressor
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The Lab
EM, FlatSat, and ?



The “FlatSat”

× We have now run two operational cycles…
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M i E  Plans for the FlatSat

× SOXE
× Lifetime test (continuous ops)
× Low cathode pressure operation
× Relationship of T(heater) and 

T(cells), ∆T across cells, V(I)
× Coking threshold, weakest cell
× ASR as function of T, P, V, I, f

× Compressor 
× Lifetime tests
× Power vs. inlet & outlet 

pressure
× Volumetric efficiency vs T, P

× Packaging
× Measure lead resistance
× Characterize inlet tube warming

× Controls & operation
× Validate mass flow 

determination from P4 and P4-
controlled flow

× Optimize PID settings for I-V 
loop, stack temperature

× Software to optimize step-wise 
controllable vs. table parameters

× Autonomy (dissertation topic)
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The Future
BAM!



MULTI-OBJECTIVE SYSTEM 
OPTIMIZATION OF A MARS 
ATMOSPHERIC ISRU 
PLANT

Eric Hinterman   |   Thesis Defense   |   05.03.22
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M i E  What we’ve learned, where we’re going

× MOXIE works remarkably well, we see hardly any 
differences from laboratory operation

× The path to a full-scale MOXIE (BAM) is clear, if not without 
challenges. BAM needs to:
× Produce >200x more oxygen
× Operate continuously for over a year! 
× Be smarter (i.e. autonomous)!
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Full-system design, modeling, and 
analysis by Eric Hinterman, PhD 
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M i E  Things to improve for the next generation

× Power efficiency
× Low density operation
× Reduced heat loss
× Gas heat exchange
× Minimizing inlet tube heating

× Fault mitigation and recovery
× Carbon (coking) avoidance
× Preventing cathode oxidation

× Extended operation
× e.g. launch-tolerant compressor 

bearings

× Dust mitigation
× Most entrained dust will not 

follow airflow through a baffle!
× We need a filter material that is 

less resistant to flow

× Monitor & control
× Voltage sense leads (to eliminate 

series resistance errors)
× Flow control and measurement

× Balance of Plant
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M i E  Longer-term applications

× Evolution to co-electrolysis for fuel & oxidizer

× Custom applications (e.g. habitat or pressurized rover
oxygen replenishment)

× CO fuels

× Energy storage?
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× Supported by HEOMD and STMD

× Mars 2020 Project managed by SMD
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Backup
To be updated
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× Carbon deposition is avoidable by careful selection of operating voltages, 

temperatures, and flow rates

× Cathode oxidation has been mitigated by recirculating CO to the inlet

× Cycle-to-cycle (cool-heat) variation is significant but acceptable
× ASR roughly doubled after 60 cycles in first test; New test underway.
× Will get better as we learn about mechanisms and improve protocols
× Not really relevant to full-scale system, which won’t generally cycle
× Compensating by increasing cell area has little impact on overall M, V, P

× Degradation from continuous long-term operation needs to be verified but 
expected to be low.
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